

Master Thesis

Named Entity Recognition and Disambiguation with Wikidata on Arbitrary Engilish Text

Yi-Chun Lin 2021/09/22

Problem

The Tasks

Named Entity Recognition (NER): given a text, tell which words belongs to a named entity

Namd Entity Disambiguation (NED): given the text span of a named entity, link it to its corresponding entry in a knowledge base.

NER + NED Example

Amazon was founded by Jeff Bezos amazon Q3884 Q3783 Q312556

(wikidata)

Problem Definition

input: plain text

Amazon was founded by Jeff Bezos.

output: text span of named entities +

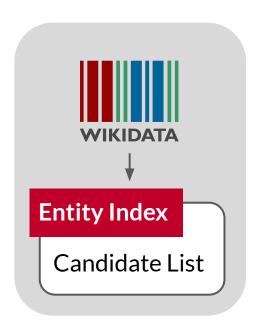
corresponding entries in Wikidata

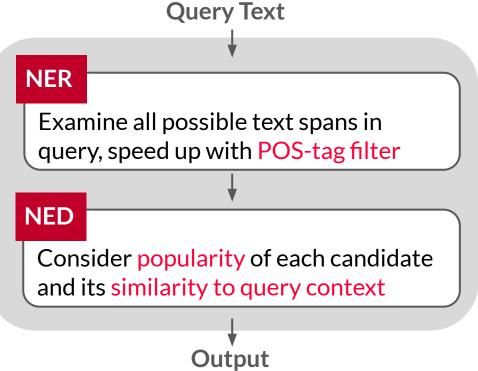
"Amazon": Q3884,

"Jeff Bezos": Q312556

Solution

Base Model





Entity Index

key: entity name and synonyms

value: candidate lists

(all entities that have the name or sysnonym)

QID	Name	Synonyms
Q3884	Amazon	Amazon.com
Q3783	Amazon	Amazon River

"Amazon": [Q3884, Q3783]

"Amazon.com": [Q3884]

"Amazon River": [Q3783]

NER - 1/2

Task: locate the text span of named entities in the query text.

Basic approach: part-of-speech (POS) tagging. Determine the grammatical category of each word.

✓ <u>Amazon</u> was founed by <u>Jeff Bezos</u> X <u>United States</u> of <u>America</u>

NNP VBD VBN IN NNP NNP NNP IN NNP

NER - 2/2

Our approach: examine text spans starting with NNP or NN. Choose the longest match.

```
Amazon was founded by Jeff Bezos

**NNP VBD VBN IN NNP NNP

"Amazon", "Amazon was", ...,

"Amazon was founded by Jeff Bezos",

"Jeff", "Jeff Bezos"
```

```
United States of America

NNP NNP IN NNP

"United", "United States",

"United States of",

"United States of America"
```


NED - 1/3

Task: afer NER, for each text span, choose the most suitable item among the candidates.

Basic approach: choose the most popular candidate.

- ✓ Obama was the president of the US.
- X Obama is a city in Japan.

NED - 2/3

Query context plays an important role.

How to measure the similarity between context and each candidate:

"context": NN and NNP in the query

"candidate": words in its name, synonym and description

"similarity": overlaps between the two

NED - 3/3

Our approach: choose the candidate with the highest score, where score =

popularity_score

sitelinks ($0 \sim P_{max}$)

+

similarity_score

overlaps
$$x \begin{cases} P_{max} / 3 * \\ P_{max} / 2 \end{cases}$$

* when longer contexts (> 10 words)

Configurable Features

On top of the base model, each feature can be turned on/off to see its effectiveness.

Synonym Expansion

- Family Name
- Demonym

KB Enrichment

- Large DB
- Wiki Abstract

FP Reduction

- NNP Reduction

Family Name

Problem: Amazon was founded by <u>Bezos</u>.

```
"Jeff Bezos": { Q312556 }
"Bezos": {Q4900382 }
```

Solution: if an entity is of type "person" and has the property "family name", add its family name to its synonym. "Bezos": {Q4900382, Q312556}

Demonym

Problem: Amazon is an American (adj.) company.

"Demonym" denotes the natives or inhabitants of a particular country, state, city, etc.

Solution: if the entity is a country and has the property "demonym", add its demonym to its synonym. "USA": {Q30}, "American": {Q30}

Large DB

Problem: the condensed version of Wikidata excludes less popular entities, leads to recognition limits.

Solution: try the full version of Wikidata

Wikipedia Abstract

Problem: Wikidata description too short, the algorithm falls back to depend only on popularity.

Solution: represent each entity with the words in corresponding Wikipedia abstract. Adjust weight s.t.

similarity score $\propto 1/\log(\# \text{ words})$

NNP Reduction

Problem: "Bank Duta" recognized as "Bank" "Duta"

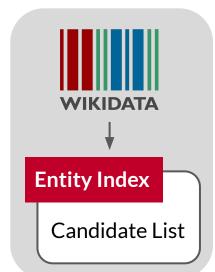
"Bank Duta": an Indonesia bank (not in Wikidata)

"Bank": a film by Charlie Chaplin (in Wikidata)

"Duta": a family name (in Wikidata)

Solution: remove consequent single-word named entities. Exception: any of them's score $> P_{max}$.

Quick Recap



NER

Examine all possible text spans in query, speed up with POS-tag filter

NED

Consider popularity of each candidate and its similarity to query context

Synonym Expansion

- Family Name
- Demonym

KB Enrichment

- Large DB
- Wiki Abstract

FP Reduction

- NNP Reduction

Evaluation

Datasets

(1) AIDA CoNLL-YAGO

news, manual annotated,217 words/doc, 20 entities/doc

(2) ClueWeb12 FACC1

mixed, automatic annotated, 26 words/doc, 1.6 entities/doc, subset of 50000 docs. SOCCER - FRANCE BEAT MEXICO 2-0 IN FRIENDLY . PARIS 1996-08-31 France beat Mexico 2-0 (halftime 0-0) in a friendly soccer international on Saturday . Scorers : Nicolas Ouedec (49th minute), Youri Djorkaeff (53rd) Attendance : 18,000

English colonists brought asparagus to North America, but asparagus did not become a commercial crop in the United States until the 19th century.

Metrics

We report Micro F1 and Macro F1 scores.

F1 Score: $2 \times P \times R / (P + R)$

Precision: ratio of correctly reported NEs among algorithm output

Recall: ratio of correctly reported NEs among the ground truth

Micro: aggregates data from all documents to compute one score

Macro: one score per document and takes average over all documents

C	Clueweb	AIDA	memory	
configuration	Micro F1	Micro F1	(CP)	
	Macro F1	Macro F1	(GB)	
base	39.49	50.9	3.80	
base	39.98	50.32	3.80	
base + family name	39.62	53.47	3.89	
base + family frame	40.48	52.29	3.09	
base + demonym	41.78	55.65	3.80	
- demonym	42.74	56.34	3.00	
base + large database	39.86	51.08	5.19	
	40.71	50.68		
base + Wikipedia abstract	38.92	51.03	5.86	
base Wikipedia abstract	39.29	50.13	0.00	
base + NNP reduction	47.06	54.26	3.80	
	42.95	53.22	3. 60	

Effectiveness of Each Feature

configuration	false positive		false negative		
Comiguration	counts	% change	counts	% change	
base	89,305	-	53,194	-	
base + family name	90,711	1.57%	51,745	-2.72%	
base + demonym	89,066	-0.27%	48,696	-8.46%	
base + large database	91,659	2.64%	52,056	-2.14%	
base + Wikipedia abstract	89,943	0.71%	53,659	0.87%	
base + NNP reduction	52,771	-40.91%	53,972	1.46%	

configuration	Clueweb	AIDA	
configuration	Micro F1	Micro F1	
	Macro F1	Macro F1	
enhanced	49.82	61.47	
ennanced	46.21	60.98	
- enhanced $+$ large database	49.61	61.39	
emianced + rarge database	46.59	61.26	
enhanced + Wikipedia abstract	48.78	60.53	
emianced + wikipedia abstract	45.18	60.17	
full	48.55	62.31	
Tun	45.56	61.50	
AmbiverseNLU	44.75	68.57	
Ambiversendu	33.58	67.78	

^{*} enhanced = base + family name + demonym + NNP reduction

Comparison to AmbiverseNLU

model	Clueweb		AIDA			
	\mathbf{tp}	fp	fn	\mathbf{tp}	fp	fn
enhanced	40,176	43,721	37,213	16,340	9,316	11,167
full	40,146	47,833	37,243	17,208	10,522	10,299
AmbiverseNLU	26,083	16,119	48,299	17,136	5,319	10,393